
MapCruncher:

Integrating the World’s Geographic Information

Jeremy Elson, Jon Howell, and John R. Douceur
Microsoft Research Redmond

jelson@microsoft.com

ABSTRACT

Current large-scale interactive web mapping services such as

Virtual Earth and Google Maps use large distributed systems for

delivering data. However, creation and editorial control of their

content is still largely centralized. The Composable Virtual Earth

project’s goal is to allow seamless interoperability of geographic

data from arbitrary, distributed sources.

MapCruncher is a first step in this direction. It lets users easily

create new interactive map data that can be layered on top of

existing imagery such as road maps and aerial photography.

MapCruncher geographically registers and reprojects the user’s

map into a standard coordinate system. It then emits metadata

that makes it easy for anyone on the Internet to find the published

map data and import it. Interactive maps them become

distributed, seamlessly composable building blocks – similar to

images in the early days of the Web.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – spatial

databases and GIS; D.2.6 [Software Engineering]: Programming

Environments – graphical environments; D.2.12 [Software

Engineering]: Interoperability; G.4 [Mathematical Software].

Keywords

Interactive maps, composition, mashups, geographic coordinate

systems, graphical interactive georeferencing, map projections,

approximate reprojection, decentralized publishing, image tiling.

1. INTRODUCTION
In the relatively short time since the introduction of online

mapping sites like Google Maps [8] and Microsoft Virtual Earth

[16], hundreds of user-created “mashups” have appeared. These

mashups cover a wide diversity of subjects. For example, Seattle

Bus Monster [19] plots public transportation routes in Seattle;

chicagocrime.org [2] highlights dangerous areas of Chicago;

RunwayFinder [18] summarizes weather and airspace surrounding

general aviation airports; housingmaps.com [11] shows real estate

prices. These specialized sites each display the data from their

particular application domain on top of maps and aerial imagery

supplied by Google or Microsoft.

While useful individually, mashups can be far more useful when

integrated with each other. Today, however, mashups are largely

independent. For example, to find cheap real estate in a low-

crime neighborhood, or find the public transportation near a

general-aviation airport, users must visit each mashup individually

and manually integrate the results. The goal of Microsoft

Research’s Composable Virtual Earth (CVE) project is to find

new ways of constructing geographic Web mashups so that they

can seamlessly interoperate.

Existing mashups are implemented largely in imperative code –

JavaScript that runs in the client. This design gives site designers

enormous flexibility, which led to the explosion of creative and

innovative mashups. Well-known standards for describing

geographically-tagged points, lines, and raster graphics had

already existed for many years (e.g., GML [17], GeoRSS [6]);

however, the sudden appearance of the mashups suggests many

applications are not well-served by these standards. The

combination of HTML and JavaScript allowed developers to go

beyond creating layers, to create applications. In other words,

mashup developers are using imperative code to customize exactly

how their application operates, rather than simply creating layers

declaratively whose user interactivity would be limited to “on”

and “off.”

A key design goal of CVE is to offer a mashup framework that is

sufficiently structured to enable composition, yet sufficiently

flexible to admit innovation. This interoperability balancing act is

common in distributed systems design, from domain-specific

frameworks such as the Flux OSKit [4], x-Kernel [15], and

stackable file systems [9], to application-agnostic schemes such as

Placeless active properties [3]. We plan to exploit the

geographical domain constraints to best achieve this balance.

1.1 MapCruncher
As a first step, we created MapCruncher, a tool that allows users

to add custom raster overlays onto the existing road and aerial

imagery provided by Virtual Earth or Google Maps. Overlays are

typically detailed maps, such as a bicycle route map, building

floor plan, or campus map. The resulting web site is an

interactive web map that features both the user’s maps and the

standard imagery. Like the underlying maps, user maps are pre-

rendered into small image tiles at a variety of zoom levels,

allowing the client to efficiently request the portions of a large

virtual image that are needed for display.

MapCruncher first assists in registering the foreign map into the

same (Mercator) coordinate system used by existing online map

sites. Users select correspondence points between their own maps

and existing maps, using road intersections or other recognizable

landmarks. Once enough points are selected, MapCruncher

estimates the transformation from the original map’s coordinate

system into Mercator by finding the best fit coefficients of a

second-degree polynomial; while inexact, the error is typically

small enough not to affect the results. MapCruncher then

reprojects the original map and renders correctly registered and

zoomed image tiles that can be seamlessly integrated with existing

imagery.

Mashups created with MapCruncher do not restrict the

developer’s freedom to write arbitrary JavaScript that customizes

the experience of their end-users, satisfying one of our design

constraints for CVE. However, MapCruncher also emits metadata

about the mashup, such as its geographic bounds, the file naming

scheme for the tiles, and a brief description of the data as entered

by the user. Because this data is semantically meaningful, it

facilitates later discovery and integration of the imagery into other

applications. In addition, much of this data is encoded as

specially constructed strings that enable ordinary web search

engines to find mashups matching geographic criteria. This

combination of composability and discoverability takes us a step

closer to our goal of a system that is capable of more seamless

integration of geographic data on the web.

In the next section, we briefly describe the history of geographic

mashups on the web. In Section 3, we review some of the

difficulties in creating mashups using raster overlays. Section 4

describes approximate reprojection, the central technique used by

MapCruncher to simplify the creation of raster mashups. In

Section 5, we describe how this idea can be used to efficiently

generate a database of image tiles. We review deployment issues

and briefly describe a few sample applications in Section 6.

Finally, we conclude in Section 7 with some thoughts on how

MapCruncher might lead us towards an integrated and

composable Virtual Earth.

2. INTERACTIVE WEB MAPS AND THE

RISE OF MASHUPS
Online mapping services have existed for years. Until recently,

they all had the same general architecture: maps would be custom-

rendered from the underlying data on demand, in response to

users’ viewing requests. The only way to move the viewport was

by clicking discrete buttons (e.g., “north”). The web service

would then render a new custom map in a slightly different

position.

Starting in 2005, Google, Microsoft, Yahoo!, and MapQuest

began to offer a new class of online, interactive maps. These map

services pre-rendered a standard set of map tiles covering the

entire coverage area. A sophisticated JavaScript program running

in the user’s browser dynamically downloads the set of tiles that

cover the user’s desired map viewport. The client positions and

crops those tiles on the screen to produce a map with exactly the

desired size and extent.

Interactive maps have several advantages over their on-demand

predecessors. Perhaps most importantly, user interaction is

significantly more intuitive. Because the final step of assembling

tiles into an image is done on the client, it’s possible to support

fluid panning of a seemingly infinitely-sized image. Pre-rendered

services typically have higher quality images as well; because tiles

are no-longer rendered in realtime, slow enhancements such as

anti-aliased fonts can be used.

Shifting so much of the map’s implementation to the client also

had an unexpected effect. Soon after the release of Google Maps

(the first such public service), web hackers learned to create

Google Maps mashups. A mashup is a combination of maps with

other geographically interesting data, such as those listed in the

Introduction. Geographic mashups gained popularity quickly.

Most major online mapping sites released official APIs that

allowed web developers to create mashups “legally.”

For the most part, geographical mashups so far have consisted of

drawing fairly simple shapes on top of the online maps—for

example, layers of pushpins (houses for sale) or polylines (bus

routes). Largely ignored, however, is the practice of

superimposing an entire image layer onto the underlying imagery.

We speculate that this is because raster overlays are difficult to

construct, as we will explore in the next section.

The difficulty in constructing raster overlays is unfortunate,

because they can be quite useful. Figure 1 shows an example.

The left pane shows the image of the University of California, Los

Angeles as seen in either Google Maps or Microsoft Virtual Earth.

The aerial imagery shows a densely built area, but the street atlas

has no data describing any of the buildings or the campus’

internal roads. However, UCLA publishes a detailed campus

map. The right pane of Figure 1 shows the same area after we

used MapCruncher to generate a raster overlay. The map can be

panned and zoomed, just as was possible before the overlay was

added.

The main contribution of MapCruncher is that it makes a task

accessible to casual users that had typically been the domain of

geographic-information-systems (GIS) professionals.

3. CHALLENGES TO THE CASUAL MAP

MASHER
In this section, we consider the difficulties encountered in taking

an arbitrary map—say, a PDF map of a university campus—and

 Figure 1. (left) Base imagery of the UCLA campus (right) UCLA’s campus map superimposed, using MapCruncher

turning it into an interactive map layer. That is, we’d like to

superimpose our map onto the road and aerial photography

already provided by online mapping sites, such that the two maps

can be viewed together, as in Figure 1.

Map overlays have existed for as long as maps have existed, so it

may seem surprising that a new tool was necessary to accomplish

a seemingly well-known task. In fact, our original intent was not

to create a tool, but to create a mashup using existing tools. In

this section, we describe some of the hurdles we encountered and

how they motivated us to build a new tool to overcome them.

3.1 Reprojection of Unknown Map

Projections
The Earth is round, but maps and the computer screens that

display them are flat. Maps that depict very small extents of the

Earth relative to their level of detail, such as building blueprints,

can make the simplifying assumption that the Earth is as flat as

the map that depicts it. However, maps of larger extent can not

ignore the curvature of the Earth. A cartographer must therefore

select a method to convert the position of points on the three-

dimensional Earth’s surface to the two-dimensional map. The

mathematical functions used for this purpose are called map

projections [20].

One spatial relationship or another is lost whenever the three-

dimensional Earth is projected into a two-dimensional

representation. Consequently, an astonishing variety of map

projections have been invented. Each projection makes different

tradeoffs, typically maintaining high fidelity in some aspect of the

Earth’s representation (e.g., the shape of objects) by giving up

fidelity in some other aspect (e.g., apparent relative sizes of

objects). Cartographers select the best projection based on a

map’s intended use. Most map projections are parameterized, to

enable them to be fine-tuned to the location, size, and aspect ratio

of the extent of the map.

For two maps to be superimposed correctly, as is our goal, they

must both be drawn using the same projection. In the world of

traditional GIS systems, this problem is usually easy to solve.

Most spatial data comes annotated with metadata describing

which projection was used to draw it, along with the projection’s

parameters. This information can be used to perform a

mathematically exact transformation of a map into any other

projection.

For casual mashups, the situation is more difficult. The vast

majority of maps available on the Web have been stripped of the

metadata that describes the map projection. For maps that do

have metadata, it is often in a format that can not be automatically

parsed—for example, a text file describing the projection in

English. Consequently, it is nearly impossible to precisely or

automatically reproject a typical map found on the Web.

This is a problem for a user who wishes to create an overlay.

Most maps are not drawn using the same projection as is used by

the major interactive online map services. Microsoft’s and

Google’s mapping sites, for example, use the Mercator

Projection. (Mercator is used because it is conformal. Conformal

projections do not distort features’ shapes, making it possible to

overlay street maps on undistorted aerial photography.) In

contrast, most other maps are not expected to be used as overlays

for photographs, so instead use one of the many projections that

produce less scale distortion. It is hard to guess exactly which

projection a map uses by inspection because there are so many

projections. For example, the USGS1 produces maps depicting

each of the 50 United States using custom projection parameters

tailored to each state.

Unfortunately, this problem is not well solved by any of the

numerous tools available that aid in the production of map

overlays. After a week or two of tinkering with various test maps,

we concluded the existing tools were all either too simple or too

complex. The simple tools were limited to linear transformations

such as scaling, translation and rotation. Our test maps did not

use the Mercator projection, so the simple tools could not warp

them sufficiently to produce good alignment at all points. The

complex tools could perform arbitrary reprojections, but required

complete specification of the projection, which was unavailable

for our test maps.

MapCruncher addresses this problem using approximate

reprojections. As we will see in Section 4, MapCruncher allows

users to point out correspondences between the two maps, then

estimates how to reproject the user’s map into Mercator without a

model of the source map’s projection. Although less accurate

than an exact reprojection, this design choice fills a useful niche

in between the low- and high-end.

3.2 Management of Large Datasets
The simple, intuitive pan-and-zoom interface provided by online

maps makes it easy to forget that they are providing access to

immense repositories of data. Microsoft’s Virtual Earth platform

has nearly 200 terabytes (1014 bytes) of imagery. While a casual

user is unlikely to ever create such a large dataset, we’ve found

that even modest maps can overwhelm normal desktop image

processing tools.

For example, consider the map of neighborhood bicycle routes

produced by King County, Washington. Two of the authors

commute to work by bicycle, so this map was of particular

interest. We tried to overlay it on several interactive maps

(Google Maps [8], Google Earth [7], and Microsoft Virtual Earth

[16]) using previously existing tools. All of them required that we

provide the overlay as a single rasterized image (e.g. a PNG).

The 2005 edition of the King County bicycle map is a 30”x36”

poster. If rendered at a zoom level large enough that its smallest

features are easily readable, it is a 3-gigapixel image. Despite

considerable effort, we could not find a PDF rendering program

under Windows or Linux capable of producing an output image of

that size. Their failure modes were diverse and often amusing.

Some ran out of RAM (3GB was available). Others filled the disk

with temporary files. Some simply froze the computer.

Even if we had we succeeded in creating such a large image from

our source PDF, other roadblocks would have awaited us. Similar

limitations existed in the tools available both for registration of

the image to a reference map and cutting it into browser-

compatible 256x256 pixel tiles. Our early failure in the seemingly

simple task of creating a bicycle-map overlay was among our

motivations to write MapCruncher.

1 The United States Geological Survey (USGS) is the official

mapping agency for the United States.

MapCruncher was designed with enormous output images in

mind. As we will describe in Section 5, our tool uses the same

strategy as the large interactive map sites: instead of producing a

single image, MapCruncher renders a large number of small

(256x256) image tiles. This allows browsers to navigate through

large custom overlays just as they do the underlying road maps

and aerial photography: efficiently downloading just the sub-

images they need, on-demand. In contrast, most other overlay

generators that require the user download the entire overlay image

before displaying any of it. This is impractical for our 3-gigapixel

test map.

MapCruncher also handles large source maps gracefully

generating each 256x256 tile individually, directly from just the

portion of the source map that it requires. Again, this is in

contrast to other tile generators that require the entire source map

to be rendered in advance, even though the image may be giga- or

even tera-pixels in size.

3.3 Mashing Without Programming
In the earliest days of the Web, content production was an

engineering discipline. Writing HTML is similar in some ways to

computer programming. Like programming, it is inaccessible to

people who do not happen to be experts in the field – that is,

inaccessible to most people who want to create content. Various

HTML authoring tools quickly appeared, making it easier for non-

experts to write web pages without needing an intimate

understanding of the underlying technology.

The situation today is similar with the creation of mashups, both

geographic and otherwise. They are difficult to create without

first learning JavaScript, HTML, XML, esoteric APIs, map

projections, and geographic coordinate systems. Our first attempt

at creating a bicycle-route mashup was slowed by the requirement

we learn many new disciplines, from web APIs to map projections

to online maps’ coordinate systems and naming schemes.

One of our motivations for writing MapCruncher was to make

geographic mashups accessible to non-experts – including people

who would not have been able to create a mashup without it. As

we will see in Section 6, MapCruncher lets beginners create

point-and-click mashups, while still allowing advanced users to

customize arbitrarily.

4. APPROXIMATE REPROJECTION
In this section, we describe how MapCruncher reprojects (changes

the shape of) and registers (correctly positions) the user’s map

such that it correctly overlays the existing Mercator-projected

maps and aerial photography.

MapCruncher differs from traditional GIS systems, which

generally perform mathematically exact map reprojections. GIS

software usually includes a large library of commonly used

projection families; the user is asked to select the one that was

used to draw the source map. The user must then enter the

numerical parameters that specify the exact projection. The

nature of these parameters depends on the projection.

Unfortunately, as we described in Section 3.1, most maps used by

our target audience have unknown projections. A user who is not

a GIS expert may not know even what a projection is.

Consequently, we designed MapCruncher to estimate the

transformation. First, we ask the user to identify some landmark

that can be found both on the user’s map and also on the Virtual

Earth map or aerial imagery; we call this identification a

“correspondence.” After obtaining several correspondences, we

find the coefficients to a polynomial function that best fits them.

A transformation with a 2nd-degree polynomial can look very

similar to the transformation from many projections into

Mercator.

“But wait!” a GIS professional might insist. “Polynomials may

look similar to the right answer, but to reproject correctly, you

need trigonometry. And asking for user input by pointing out

map landmarks is horribly prone to error!” This is true – and the

users who have spatial data annotated with all the metadata

required to do an exact transformation are likely to use GIS tools,

not MapCruncher. While not exact, we’ve found polynomials

produce excellent results in a wide variety of maps. By analogy,

the existence of AutoCAD does not obviate the value of Microsoft

Paint.

In Section 4.1, we describe the process of gathering enough data

from the user to reproject the user’s map. In Section 4.2, we

describe how MapCruncher uses that input to produce a usable

map overlay.

4.1 Georeferencing
The first step in creating an overlay with MapCruncher is

specifying a number of correspondence points between the user’s

map (the “source map”) and the existing road maps and aerial

photography (the “reference map”). Because the reference maps

are, themselves, already registered to the Earth’s coordinate

system2, each correspondence identifies the real latitude and

longitude of a point on the source map.

MapCruncher provides a simple interface for specifying

correspondence points. The MapCruncher GUI, shown in

Figure 2, has two viewing panes. The source pane displays the

source map, which can be panned and zoomed to arbitrary

locations and zoom levels. The reference pane displays the

reference map, using imagery from Microsoft Virtual Earth. The

2 Specifically, the “WGS84” datum.

source map

crosshairs

reference map

crosshairs

Figure 2. Establishing a correspondence between a source

map and the reference map

reference map can be panned and zoomed independently of the

source map.

The user employs the two panes to find a location on the source

map and a location on the reference map that visually correspond

to each other. Any landmark that appears in both maps can be

used as a correspondence. For example, in Figure 2, we are

registering a building floor plan to Virtual Earth’s aerial

photograph of the same building. In this example, the corners of

the buildings are readily visible in both views and make excellent

references for a correspondence. For some source maps, it may be

more convenient to use Virtual Earth’s road-map view instead of

aerial photography. Street intersections make excellent

correspondences for many maps.

Each pane includes crosshairs that identify the center of the pane.

The user indicates a location by panning the image until a feature

is under the crosshairs. Once the same feature is under the

crosshairs in both panes, the user clicks a button labeled “Add

Point”. This process is repeated until there are enough

correspondences. In practice, between two and twenty are

required, depending on the source map.

We discovered that in maps that cover a large geographic extent,

establishing 20 correspondences can be time-consuming. To

speed the process, MapCruncher can helpfully guess the spot on

the reference map that corresponds to an arbitrary source map

point. As soon as the first two correspondences are defined, the

user can “lock” the views of the source and reference maps

together. When one locked map is panned or zoomed, the other

follows suit.

With just two or three points, the lock is based on a poor

approximation, but it is usually good enough that it greatly assists

the user in establishing additional correspondences. Using locked

views, the user can zoom rapidly to a new location in the source

map, and the reference map follows along. Often, only a little

nudging of the (unlocked) reference map is required to find the

exact matching point. Thus, the third and following

correspondences in a mashup become much less tedious to define.

As each new point is added, the reprojection approximation

improves.

4.1.1 Error display
Sometimes, the user accidentally establishes a correspondence

between points on the source and reference maps that do not

actually correspond. A common instance is an “off-by-one-block”

error (see Figure 3).

The reprojection process will dutifully attempt to distort the

source map to satisfy the erroneous correspondence. However, if

the reprojection is overconstrained and there are enough correct

correspondences, the result will mostly respect the majority.

MapCruncher uses the distance between the reprojected point and

the user-placed point to find outliers. It computes the magnitude

of disagreement for each correspondence, sorts by decreasing

disagreement, and presents the list to the user (see Figure 4).

The observed amount of disagreement provides the user with a

quick suggestion of which points might have been placed

incorrectly. The user can then revisit the top few “suspicious”

correspondences to ensure they’re in the right place.

As an additional aid to the user, MapCruncher plots a vector from

where the user placed a correspondence point towards where the

majority suggests the point should have been placed (see

Figure 5). In this case, the correct source map position (left side)

corresponding to the marked reference map position (right side) is

one block south of the point selected by the user. The

disagreement vector points south, suggesting “perhaps the point

belongs somewhere down there.”

4.2 Reprojection
After the user has created correspondences, the next step is to

generalize them, relating the entire source map to global

coordinates. Mathematically, we need to produce a function that

captures the relationship between image coordinates on the source

map and image coordinates of the Mercator-projected reference

map.

 Figure 4. Correspondences sorted by disagreement

 Figure 3. Establishing a correspondence between a source

map and the reference map

 Figure 5. Disagreement vector points toward likely correct

location.

The mathematically exact relationship between two maps is

determined by (1) the projection of each map and (2) the

parameters of that projection. The projection of the reference map

and its parameters are known (in our case, Mercator). Therefore,

one possible approach (which we do not employ) is to try to fit

various selections of projection and parameters to the user-entered

correspondence data to discover a best fit. Given the fitted model

for the source map projection and the known reference projection,

the function is determined.

Unfortunately, the set of projections in which source maps may be

drawn is quite large, and the process of fitting parameters to each

projection is diverse and involved. An alternative approach that

we use in our application is to ignore the precise projections, and

instead use an approximation to model the entire class of potential

reprojections.

Like a projection, an approximate reprojection is a class of

functions selectable by parameters. MapCruncher includes two

classes of reprojections: (1) affine reprojections, including both

general affine reprojections and the restricted subclass of rigid

reprojections, and (2) bivariate polynomial reprojections,

specifically the subclass of quadratic reprojections. These will be

discussed in the following sections.

4.2.1 Affine reprojection
The affine reprojection is a linear relationship between the source

and reference coordinate systems:

sx = c00rx + c01ry + c02

sy = c10rx + c11ry + c12

An advantage of the affine reprojection is that it has only six

parameters, which can be inferred with as few as three

correspondences. (Each correspondence provides two constraint

equations, one in x and one in y.) In Section 4.2.5, we discuss

how these parameters are estimated.

A limitation of affine reprojection is that it preserves straight

lines. If the source map is in, for example, a conic projection, then

exact reprojection will change straight lines in the source map into

curved lines in the reference projection. Affine reprojection

cannot produce this effect, and will therefore introduce errors into

maps where this effect is noticeable.

4.2.2 Rigid reprojection
A restricted subclass of affine reprojection is rigid reprojection. A

rigid reprojection constrains the affine projection to only allow

translation, scaling, and rotation, eliminating asymmetric scaling

and skew. If both source map and reference map obey conformal

projections (a common property which is true of Mercator), then

the best affine projection will always be rigid.

The advantage of a rigid reprojection is that it has only four

degrees of freedom instead of six, and can thus be determined

with only two user-provided correspondences rather than three.

MapCruncher includes a simple mechanism by which the

implementation of affine reprojection may be reused to implement

rigid reprojection. As described above, affine reprojection

requires three correspondences, whereas rigid reprojection

requires only two. MapCruncher synthesizes a third

correspondence and uses the resulting three correspondences to

solve for the affine reprojection parameters as described above.

Suppose we have two correspondences A and B, each comprised

of points (As,Ar) and (Bs,Br) on the source and reference maps,

respectively. To synthesize the third correspondence, we find on

each map a point C that forms a right isosceles triangle with A

and B.

4.2.3 Quadratic reprojection
To accommodate maps where the constraints of affine

reprojection introduce significantly visible error, we also provide

polynomial reprojection, in particular the subclass quadratic

reprojection. A quadratic reprojection takes the form:

sx = c01rx
2
 + c01rxry+ c02rx + c03ry

2
 + c04ry + c05

sy = c11rx
2
 + c11rxry+ c12rx + c13ry

2
 + c14ry + c15

By introducing terms of higher degree than the linear terms of

affine reprojection, the quadratic reprojection can better

approximate an exact reprojection, including some curvature. The

curvature is still not perfect, because exact reprojection generally

involves trigonometric functions rather than polynomials. In

practice, however, we have found that the quadratic reprojection

usually suffices. For most source maps, reprojection error is

dominated by sources other than the limitations of our quadratic

model.

The disadvantage versus affine of quadratic reprojection is that it

requires six user-entered correspondence points to completely

constrain its parameters. These parameters are inferred in the

same manner as those for affine reprojection, as discussed in

Section 4.2.5.

4.2.4 Higher-degree polynomials
Of course, the technique used for quadratic reprojections can be

extended to polynomials of higher degree. We have found in

practice that quadratics are sufficient for most applications.

Higher degree polynomials might better approximate the exact

 Figure 6. Reprojecting from a conic projection requires

bending straight lines.

trigonometric projection for some maps where curvature is

exaggerated, but we have only rarely encountered such situations.

The top image In Figure 6 shows a source map in conic

projection. The bottom image shows the map reprojected into

Mercator, based on eleven manually identified correspondences.

Because the image covers a large longitudinal extent, its curvature

is noticeable in the reprojection. Even in this extreme case, the

quadratic reprojection is sufficient for the scales of interest.

4.2.5 Parameter fitting and Error Minimization
The preceding subsections describe formulas and their parameters,

but not how the parameters are determined. If a user provides the

exact number of correspondences necessary for the reprojection

(three correspondences for affine or six correspondences for

quadratic), the parameter values can be determined with a simple

matrix inverse. The resulting reprojection will place the specified

correspondence points of the reprojected map at the exact

locations on the reference map that the user has identified.

A user may choose to provide more correspondence points than

strictly necessary. There are several reasons for this: The user may

be concerned about the possibility of errors in the source map; the

user may have some uncertainty about which locations in the

source map correspond to which locations in the reference map;

or the user may be unsure of where points should be optimally

placed to minimize distortion of the reprojected map. When

additional correspondences are specified, it is not generally

possible to satisfy all correspondences simultaneously. Instead,

MapCruncher produces a reprojection that places the specified

correspondence points of the reprojected map at locations nearby

those on the reference map that the user has identified. In

particular, it attempts to minimize the mean squared distance

between the reprojected correspondence points and the reference

points. In other words, the parameters are determined using a

linear least-squares fit. In practice, our system employs singular

value decomposition (SVD) [1] to implement the fitting

procedure.

4.2.6 Automatic selection
MapCruncher can reproject a source map with as few as two

correspondence points established, using rigid reprojection. When

a third point is added, the application begins using a general

affine reprojection. As more points are added, the approximation

is improved by using parameter fitting to average out error. Once

there are at least n correspondences, our application switches to a

quadratic reprojection.

The minimum value of the threshold n is six, since that many

correspondences are required to determine a quadratic

reprojection. We chose to use n=7, because with only six points

there is no redundant information, so tiny errors can cause the

application to generate a quadratic projection with undesirable

distortions. In contrast, the same six points overspecify an affine

reprojection, providing sufficient redundancy to average out error.

MapCruncher allows the user to disable quadratic projection, in

cases where affine reprojections with more than 7

correspondences are desired. This behavior is useful for source

maps where it is important that straight lines not be curved, such

as building floorplans.

5. TILE RENDERING
Once enough correspondences have been established,

MapCruncher has sufficient information to determine the source-

map pixel corresponding to every latitude and longitude covered

by the source map. When the program is used interactively in the

“locked” mode (i.e., the source map and reference map moving in

tandem), reprojected tiles are rendered and cached on-demand

each time the user looks at a new area of the world.

However, in the final mashup, we decided against on-demand

rendering, for several reasons. First, rendering can take a long

time. This is a particular problem for slow computers, mashups

that have a large number of input source maps, and mashups that

have complex PDFs as source maps. Because storage is cheap

and responsiveness of web applications is important, it makes

more sense for MapCruncher to exhaustively pre-render all image

tiles—just like Virtual Earth and Google Maps. Second, on-

demand rendering places a much higher complexity burden on the

user. It would require special configuration of the web server,

which is often not possible for people without administrative

access to one, and difficult for beginners. On-demand rendering

would also limit the number of compatible web server

implementations and server operating systems. In contrast, pre-

rendered tiles are just data: they can be served from any Plain Old

Web Server (see Section 6.2).

For these reasons, MapCruncher allows users to a pre-render a

Boundaries in source

coordinates are projected…

into boundaries in reference

coordinates…

and used to select tiles which

contain the region of the source

map.

 Figure 7. Identifying the set of tiles that cover a reprojected map

database of image tiles. Users can first select the maximum zoom

level for which tiles are produced. Each additional zoom level

increases the spatial resolution of tiles by a factor of two in each

dimension, and therefore increases the total storage requirements

by a factor of four.

5.1 Determining geographic extent of source

map
The geographic extent of the source map is determined by

applying the inverse of the reprojection function to the boundaries

of the source map. The inverse function maps from source map

coordinates to reference map coordinates, so this process

produces a boundary in reference coordinates that corresponds to

the boundary of the source map. The points on the reference

boundary are converted into tile coordinates to select the set of

tiles that contain the entire reprojected source image (see

Figure 7). This tile selection process is repeated for each zoom

level for which the user desires to output tiles.

5.2 Selecting region of source map to sample
In theory, the best-fit reprojection function is all that is needed to

produce a complete set of rendered tiles: it allows us to find the

source-map pixel that corresponds to every possible reference-

map pixel. However, there are many choices in the

implementation of tile rendering that can have dramatic effects on

its efficiency and resource requirements.

There are two straightforward approaches by which rendering

could be done, neither of which we use. First, one could use the

reprojection function (along with information about the location

and zoom level of the tile being rendered) to map each individual

pixel’s location to a location in the source map; render the area of

the source map defined by the extent of the pixel; and use the

result of the rendering to assign visibility and color to the pixel.

This approach is prohibitively expensive in terms of the

computational cost per pixel.

A second inefficient approach is to first render the entire source

map at the scale dictated by the tile set’s zoom level. Then, for

each pixel in a final rendered tile, find the corresponding pixel in

the enormous, rendered source map. This approach, used by

many overlay tools, is computationally efficient and conceptually

simple because the source map needs to be rendered only once.

However, it is prohibitively memory-intensive when rendering

maps at high zoom levels. This is because rasterizing a vector

image such as a PDF source map requires memory proportional to

the size of the raster. For many source maps, rasterizing the entire

thing at a high zoom level can result in a giga- or tera-pixel image.

MapCruncher’s approach is to render the pre-image of each tile

one at a time. This approach is efficient in both computation and

memory. For each final rendered tile to be generated, it

determines the section of the source map needed to generate the

tile, and renders only that part of the source map. To determine

the section, the boundary of the reference tile in reference

coordinates is transformed through the reprojection function to

produce a boundary in the source map coordinate system (arrow 1

in the Figure 8). An axis-aligned bounding box is drawn around

the transformed tile boundary (as shown in the figure). The

region is axis-aligned because most source map formats are

amenable to sampling in such regions. The region is also slightly

enlarged to account for projections with high curvature.

Once this target region is computed, we ask the underlying PDF

renderer to produce a sample image of only the portion of the

source map needed to render the final tile. This is memory-

efficient because it only requires rasterization of small (approx.

300x300 pixel) images. Of course, at high zoom levels, these

images may cover a minute portion of the source map.

MapCruncher uses a PDF renderer licensed from Foxit Software

[5], which cleverly stores the list of image vectors in the PDF so

that most of them can be pruned (not rendered) when viewing a

tiny region, making the pre-image approach even more

computationally efficient.

Finally, this small region of the rasterized source-map image is

sampled to produce the final rendered tile. For each of the

256x256 pixels in the final tile, the reprojection function is used

to find the four nearest pixels in the source-map image. These

four pixels are combined using bilinear interpolation.

6. DEPLOYMENT
One of our guiding principles in writing MapCruncher was that it

should minimize the specialized knowledge required by the user

as much as practical. Therefore, it was important that

MapCruncher not only create map image tiles, but automatically

emit a fully working web application that gives users instant

gratification of seeing their creation come alive.

6.1 Sample Web Page
When MapCruncher renders output tiles, it also creates a sample

web page that shows the user’s map layers overlaid on top of

Virtual Earth’s street maps and aerial imagery. The sample page

also includes a “Find…” box, allowing users to search for

businesses (using Virtual Earth’s yellow pages service) and

overlay pushpins right on top of their custom maps. The new

“VE3D” digital globe is also supported – instantly draping the

1. Tile boundary

transformed into

source map

coordinates.

2. Transformed

boundary is axis-

aligned to select a

region of source

map to sample.

Figure 8. Identifying the set of tiles that cover a reprojected map

user’s map tiles on top of a three-dimensional rendering of Earth

that can be viewed from any position and angle. VE3D uses a

digital elevation map that is compatible with MapCruncher tiles,

so bicycle routes can actually be seen going up and over

mountains (see Figure 9).

To some, it might seem that this sample web page is unnecessary:

surely anyone who bothered to create a mashup will also bother to

write their own web page to display it! By way of

counterargument, consider Microsoft’s basic HTML editor,

FrontPage. When a user opens FrontPage, it titles the default

blank document “New Page 1” – a string that appears 6 million

times in the MSN Search index as of this writing.

6.2 “Plain Old Web Server” Requirement
Another important constraint in our design was that the rendered

mashup can be served by a “POWS” – Plain Old Web Server.

That is, we do not depend on the availability of any special server

features, such as the ability to execute CGI scripts, interpret

server-side includes, or configure custom error documents.

Dependence on these features would limit our audience to

technical users who have administrative access to a web server.

MapCruncher requires nothing from a web server other than its

most basic function: return a file if it exists and a 404 error code if

it does not exist. This means that users can create public mashups

even without owning a web server – they can simply upload the

output directory to any public web service. This includes both

beginner-oriented services such as GeoCities and more advanced

offerings such as Amazon S3. In both of these examples, server-

side execution and custom web configuration are not available.

6.3 Applications
MapCruncher has a wide variety of uses. Three of our favorites

are described here and available on the web.

6.3.1 Pacific Northwest Bicycling Guide
Our most ambitious mashup to date is the Pacific Northwest

Bicycling Guide [14] – a seamless combination of bicycle route

maps from 7 counties and 8 municipalities around Washington

and Oregon. Overlaying bicycle maps on top of the underlying

street maps is quite valuable. Bicycle maps typically do not show

the smaller off-trail roads, making it difficult to plan an end-to-

end trip without the overlay. The seamless integration of aerial

photography can also clear up ambiguities in sometimes casually-

drawn bicycle maps. For example, we used it to discover that a

pedestrian overpass was available on trail not clearly depicted as

crossing a major highway. The “Find a business…” feature of

Virtual Earth also makes it easy to, say, find an ice cream shop

along your route on a hot day.

6.3.2 National Park Service Maps
The United States’ National Park Service publishes maps of more

than 200 National Parks in the public domain [10]. Each is

annotated with a rich set of data, including hiking trails, the

names of many small lakes and rivers, geological formations, etc.

In contrast, vendors of the street-map data found in most online

mapping sites simply depict the park as a large blank area with the

park name.

Using MapCruncher, it’s easy to combine the rich annotations

found in the park maps with the aerial and satellite photography

provided by Virtual Earth [13]. It’s also easy to leverage Virtual

Earth’s other features to produce new composite services – for

example, getting driving directions from your home to the ranger

station, drawn right on top of the park map.

6.3.3 Do-It-Yourself Aerial Photography
Virtual Earth and Google are both adding and updating imagery

as quickly as they can; it's a top priority for them. However, for

the foreseeable future, there will always be people who want high-

quality aerial photography in areas that do not yet have coverage.

Previously, there was no way for users to add their own

photography. MapCruncher makes this easy for the first time.

Two members of the MapCruncher team, coincidentally, are

private pilots. While on a flight 4,000 feet over the small town of

Forks, Washington, we had the idea of using new aerial

Figure 9. Bike trails on tiles emitted by MapCruncher draped over VE3D terrain.

photography as a source-image instead of a map. We circled for

several minutes, taking a few snapshots out the side window with

an old digital camera.

On the ground, we imported the photos into MapCruncher, using

distinctive landmarks shared by both our photos and the Virtual

Earth reference photos. The results were surprisingly good [12].

While seams between the images are visible, the polynomial

fitting function was able to effectively ortho-rectify large portions

of our photos. (Most of them had severe perspective distortion

due to being shot at an oblique angle.)

Despite these problems, there was a dramatic increase in image

quality, especially relative to the time and financial cost of our

project. In May of 2006, Virtual Earth’s coverage of Forks was

1m/pixel, 12-year old, black-and-white USGS aerial photography;

Google’s was 8m/pixel satellite photography. After one hour in a

small airplane and a few hours on the ground, we had modern,

full-color, 0.5m/pixel photography of a market so small that it’s

unlikely to be re-photographed by Microsoft or Google in the near

future.

7. A COMPOSABLE VIRTUAL EARTH
Most of the mashups we’ve seen to date are interesting because

the whole is greater than the sum of the parts. For example,

having a bicycle map integrated with a street map is more useful

than either one individually. To get the most utility from

mashups, it’s not enough to combine users’ maps with Virtual

Earth. We also need a way to make them easily composable with

each other.

Ideally, mashups will no longer be thought of as individual sites,

disconnected from the rest of the world. Instead, the building

blocks of mashups—the layers of rasters, points, and lines that

underlie them—should be composable, interchangable building

blocks. We envision a world where mashups have more structure,

so that the bicycle layer we render can easily import the Doppler

weather data you’ve rendered, and can be imported into the web

site that features hiking layers. If people publis their applications

and the underlying data in a semantically meaningful way, a

nearly infinite set of innovative and diverse applications are sure

to follow.

MapCruncher tries to take a step in this direction by cleanly

separating the imperative code that run the mashup from

declarative code that describes the raster layer being imported.

Specifically, each time MapCruncher renders tiles, it also

describes those tiles—their geographic position, rendering depth,

and so forth—in an XML file specially seeded with strings that

can be found by search engines. With enough people creating

MapCruncher layers, we can collectively create an enormous

database of interesting data layers, all geographically registered to

compatible coordinate systems and instantly searchable using

existing search engines.

Who knows what kind of interesting mega-mashups might follow?

8. ACKNOWLEDGMENTS
The authors would like to extend their sincere thanks to Danyel

Fisher, Steve Lombardi, Karen Luecking, Joe Schwartz, Chandu

Thota, and the many testers who provided us valuable feedback.

9. REFERENCES
[1] H. Abdi. "Singular Value Decomposition (SVD) and

Generalized Singular Value Decomposition (GSVD)." In

N.J. Salkind (Ed.): Encyclopedia of Measurement and

Statistics. Thousand Oaks, Oct 2006.

[2] chicagocrime.org, http://www.chicagocrime.org/map/.

[3] W. K. Edwards, A. LaMarca. Balancing Generality and

Specificity in Document Management Systems, Interact'99.

[4] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, O. Shivers.

The Flux OSKit: A Substrate for OS and Language Research,

16th SOSP, Oct 1997.

[5] Foxit Software, http://www.foxitsoftware.com/.

[6] GeoRSS. Graphically Encoded Objects for RSS feeds,

http://www.georss.org/.

[7] Google. Google Earth, http://earth.google.com/.

[8] Google. Google Maps, http://maps.google.com/.

[9] J. S. Heidemann, G. J. Popek. File-System Development with

Stackable Layers, ACM TOCS 12 (1), Feb 1994.

[10] Harpers Ferry Center. National Parks Service Maps,

http://www.nps.gov/carto/.

[11] housingmaps.com, http://www.housingmaps.com/.

[12] MapCruncher team. Do-It-Yourself Aerial Photography,

http://research.microsoft.com/mapcruncher/Gallery/Forks/

[13] MapCruncher team. National Park Maps,

http://research.microsoft.com/mapcruncher/Gallery/National

Parks/

[14] MapCruncher team. Pacific Northwest Bicycling Guide,

http://research.microsoft.com/mapcruncher/Gallery/NWBike/

[15] N. C. Hutchinson, L. L. Peterson. The x-Kernel: an

Architecture for Implementing Network Protocols, IEEE

Transactions on Software Engineering 17 (1), pp. 64-76, Jan

1991.

[16] Microsoft. Microsoft Virtual Earth,

http://www.microsoft.com/virtualearth/default.mspx.

[17] Open Geospatial Consortium. Geography Markup Language,

version 3.1.1.

[18] RunwayFinder – a flight planning tool for pilots,

http://www.runwayfinder.com/.

[19] Seattle Bus Monster, http://www.busmonster.com/.

[20] J. Snyder. Map Projections-A Working Manual, United

States Government Printing, Feb 1983.

